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High- Frequency Oscillation

If the frequency of oscillation is high enough, Eqs. (6)
reduce to

= Byy + Q

iuQ = (l/Cr)Qyy

from which one easily obtains

Q = G0e-^l/zy
B = [Go/iu(<r - l)][e-^1/2^ - e-^l'*»]

which is of the "shear-wave" type, predicting a phase ad-
vance of 45° in the local rate-of-heat-transfer fluctuations
and an equivalent phase lag in the skin-friction oscillations.

For sufficiently small values of co, only the first term of the
series expansion will be significantly important. It easily
is verified that M, = F + rjF' and R, = d + \t}V . It
then remains to determine Ni and Si. As a preliminary step,
NI and & were determined using the von Karma'n-Pohlhausen
method.5 The results indicate that there exists a critical fre-
quency co0 such that Xi = x^/GQ = 0.7, which separates the
regions of applicability of low- and high-frequency solutions.
However, to predict the results more accurately, these
equations are being integrated numerically, and the results
will be presented in a separate paper.
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Structural Damping

H. H. SCANLAN* AND A. MENDELSONf

Vase Institute of Technology, Cleveland, Ohio

ARE certain mathematical models of structural damping
physically unrealizable? It is probable that true damp-

ing mechanisms in structures are of a quite complicated
character. However, in a good many practical cases, it has
appeared possible to account in a reasonable measure for the
damping in an overall way by means of a linear model. It
goes without saying that this model must be free of gross
anomalies; a poor model may confuse the situation. When
the simplified model has been chosen, nothing other than an
approximation to the overall effect of the damping is expressed
concerning the true damping mechanism. To inquire, then,
into whether one or another simplified model itself is physi-
cally realizable or unrealizable would appear to be a less re-
warding side of the question. Crandall, in a recent publica-
tion1 raises the question of the physical realizability of one
of the most familiar linear damping models; the present note
discusses this model.
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The damping model in question was employed in 1938 by
Theodorsen and Gar rick2 in early flutter studies, and they
ascribed it to Becker and Foppl. Specifically, it employs the
device of introducing linear structural damping into the typi-
cal flutter equations having complex coefficients, not as a
viscous velocity term, but as a term igun

2x, where i = (— 1)1/2,
g > 0 is a damping coefficient, and x is displacement of a
typical degree of freedom, the natural circular frequency of
which is con. This device has the well-known effect of creat-
ing a damping term in phase with velocity x and proportional
to a displacement x which has the form el(at with co > 0, since
the term is advanced 90° in phase by the factor i. Note
that, in this sense, since the usual flutter analysis of the type
alluded to was made precisely for nondecaying sinusoidal
oscillations of the form elwt only, the device is effective in its
intended purpose within this context. Therein, incidentally,
no occasion arises to consider co other than positive.

As an equation typical of this situation, consider the fol-
lowing :

x + (I + (1)

where con is the natural circular frequency of the undamped
system and co > 0 is the forcing circular frequency, A being
some complex constant.

Briefly recall here the solution of Eq. (1): it consists of
the free vibration (solution for A = 0) plus a forced vibration
at circular frequency co. Crandall1 raises the question of the
physical unrealizability of the solution of Eq. (1) "if . . .
negative frequencies are to be considered . . . ." Normally,
as was pointed out, only positive co is considered in the forced
vibration. "Negative frequencies" are to be considered in
Eq. (1), therefore, only in the cases where the situation de-
scribed by Eq. (1) is extended to other meanings than the
one originally intended (such as modification to greater
generality of the right-hand side and, in particular, an ex-
tension into the negative Fourier domain) or in the homo-
geneous case, i.e., the free vibration. In examining the free
vibration an anomaly is, in fact, encountered. It is found
that, for arbitrary initial conditions, and for either g > 0 or
g < 0, no decaying solution exists, but rather there always
exists a portion of the solution having exponentially increas-
ing amplitude with time. This is demonstrated as follows:
Let g be positive or negative. Take A — 0 in Eq. (1) and
assume a solution in the form

x == x^e

with cod = cor + i&i (^r,co; real). Use of this solution in Eq.
(1) yields

-cod
2 + con

2(l + ig] = 0

which in turn gives the following solutions for cor and co;:

["! + (! + <72)1/2T'co r = ±co^————-————J
1/2

^ = Wn {2[1 + (1 + £2)1/2])1/2

The solution for x is then

with XQI and #02 arbitrary constants and

"! + (! + )1/2TJ
| 1/2 I

If one insists that the solution must represent a decaying
motion for arbitrary initial conditions (XQI, x^ db 0), the sign
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of g must coincide with that placed before o>n and therefore
will be different for each of the two terms of the solution,
which is in contradiction to the original assumption. Thus
it is seen that the fact of whether oscillations are decaying or
diverging is not governed, in this equation, by a single sign
for g. For g > 0, for example, oscillations always will diverge
unless #02 is taken equal to zero, which then leaves only one
arbitrary constant to satisfy two initial conditions; further,
the condition XQ = 0 cannot be satisfied without reduction
to a trivial solution. Among other things, the situation de-
scribed points out an error in Ref. 4 which was indicated
to the authors by Crandall.3

The fact that the physical system is clearly a decaying one
for positive damping makes it appear desirable to attempt to
remove the anomaly just mentioned. Crandall1,3 suggests
a method of accomplishing this, the two alternatives of
which, however, must be distinguished from each other. In
Ref. 1, he suggests replacing 1 + ig by 1 + W sgnco. This
applies to the forced case only. The alternative method
(free case) is to replace 1 + ig by 1 + ig sgnov The second
alternative does, in fact, assure a decaying solution for the
homogeneous part of Eq. (1). However, it does not retain
damping in phase with velocity. The 1 + ig device is,
strictly speaking, correct only for the originally intended use,
namely, simple harmonic motion of the form ei(at, a? > 0;
that is, it represents damping proportional to displacement
and in phase with velocity only in this case. In any other
case, such as an oscillation eiu>dt with cod complex, for ex-
ample, the velocity, iudx itself clearly has components both
in and 90° out of phase with ig^x.

The use of the first alternative, 1 + ig sgno>, yields absurd
results1 for the response in the case where the right-hand side
of Eq. (1) is replaced by a pulse and the system is analyzed
employing the Fourier transform over — oo < co < oo. The
particular absurdity that occurs when the Fourier transform
is employed is a result of the artificial discontinuity introduced
in g at co = 0.

In brief, therefore, the factor 1 + W (g > 0) works to give
the desired damping effect only in the sinusoidal case in-
tended and not in others. A modification of it is unneces-
sary in the original (sinusoidal) case; one suggested modi-
fication fails to provide damping proportional to displacement
and in phase with velocity in the free case and exhibits other
anomalies under Fourier transform treatment in nonsinu-
soidal forced cases. If damping proportional to displace-
ment and in phase with velocity is desired, which will elimi-
nate the previous anomalies in the free case (perhaps as a
tour de force), the authors suggest the following:

Suppose that one is given a single degree of freedom system
with undamped natural frequency con = (k/m)112 and with
a damping force having the properties that it is 1) propor-
tional to the displacement, and 2) in phase with the velocity.
Then the free oscillations of such a system can be described
exactly by the following differential equation:

mx + (gk/wd)x+ (I + g2)l'2kx = 0 (2)
where the damped frequency oid is real and is given by

cod = «„{[! + (l+02)"*]/2}"* (3)
A similar formulation is given by Pinsker5 in commenting
on a paper by Soroka.6 It can be determined readily that
Eq. (2) satisfies the desired requirements precisely and does
not have any of the anomalies associated with Eq. (1). It
therefore provides an exact viscous model corresponding to
the desired structural damping model.
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Effects of Mass Addition on the
Stability of Slender Cones at

Hypersonic Speeds
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THE effect of mass addition on the flow over bodies moving,
at hypersonic speeds has been studied by several investi-

gators (e.g., Cresci and Libby1). In most of this work, pri-
mary attention logically has been directed toward the effects
of foreign-gas injection on heat transfer and pressure dis-
tributions, and, principally for this reason, most of the work
has been done at zero angle of attack. The foreign gas can
be provided either by some active injection system or by the
action of an ablation heat shield. With increasing rates of
injection, the basic flow about the body can be affected
significantly. One such effect was observed in the paper
by Cresci and Libby,1 where it was shown that the shock-
wave standoff distance can be increased by gas injection at
the nose of a body.

Another effect of mass addition at the nose has been investi-
gated in the 14-in. helium tunnel at the NASA Ames Research
Center. In this study, a cone having a semivertex angle of
10° was tested at a Mach number of 21 and at a Reynolds
number (based on length) of 4.5 X 106. The cone was 2 in.
in diameter at the base and had a hemispherical tip of 0.076-
in. radius. In this hemispherical tip were one hole 0.040 in.
in diameter and eight holes 0.025 in. in diameter. From these
holes helium was injected at various rates, and the effects of
this gas injection on forces and moments were determined
at angles of attack up to about 14°.

Some of the results of this investigation are shown in Fig. 1.
For these results, the mass rate parameter m is the ratio of
the mass rate of injection to the product of the freestream
velocity, freestream density, and body base area. These
results show that the mass addition decreases the stability at
low angles of attack and increases it at intermediate angles.
In fact, a crossover occurs, and at higher angles the pitching
moments are increased in magnitude compared to those for
the body without injection. With increasing mass addition,
the changes in stability and moments become more pro-
nounced, and the crossover angle of attack increases. The
normal force, however, decreases with increasing injection
rate at all angles of attack, although the reductions are some-
what less at the higher angles. A possible explanation for
this behavior can be obtained with the aid of the results of
another series of tests. The same cone with a series of over-
sized spheres at the tip was tested at a Mach number of 18
and a Reynolds number of 3.7 X 106. The direct contribu-
tion of the sphere drag on the normal forces and pitching
moments was assumed to correspond to a drag coefficient of
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